Abstract

Abstract. Markov random field (MRF) is an effective method for description of local spatial-temporal dependence of image and has been widely used in land cover classification and change detection. However, existing studies only use pair-point clique (PPC) to describe spatial dependence of neighbouring pixels, which may not fully quantify complex spatial relations, particularly in high spatial resolution images. In this study, multi-point clique (MPC) is adopted in MRF model to quantitatively express spatial dependence among pixels. A modified least squares fit (LSF) method based on robust estimation is proposed to calculate potential parameters for MRF models with different types. The proposed MPC-MRF method is evaluated and quantitatively compared with traditional PPCMRF in urban land cover classification using high resolution hyperspectral HYDICE data of Washington DC. The experimental results revealed that the proposed MPC-MRF method outperformed the traditional PPC-MRF method in terms of classification details. The MPC-MRF provides a sophisticated way of describing complex spatial dependence for relevant applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.