Abstract

In this paper, it is attempted to study possible sustainability solutions for building structures. In this context, comparisons are made between two load-bearing columns with different building materials – glued laminated timber and concrete – with regard to structural design, economic consequences and the emission of greenhouse gases. In terms of structural design, the results show that with small axial forces, glulam columns will result in smaller cross-sectional areas compared to concrete columns. However, at larger axial forces, concrete columns will result in smaller cross-sectional areas than glulam columns. An increased column length also means larger dimensions for glulam columns, but this does not always apply to concrete columns. With respect to environmental impact, it is shown that using glulam columns is the more environmentally friendly option. From an economic point of view, the cost estimates for glulam and concrete columns may vary depending on the country and the abundance of the construction material. In Sweden, a forest-rich country, it is shown that the costs for both column types are quite similar considering small axial loads. At higher axial loading, concrete is generally the cheaper alternative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.