Abstract

Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multidimensional space. Two gait generation methods using GA (Genetic Algorithm), GP (genetic programming) are compared to develop fast locomotion for a quadruped robot. GA-based approaches seek to optimize a pre-selected set of parameters which include locus of paw and stance parameters of initial position. A GP-based technique is an effective way to generate a few joint trajectories instead of the locus of paw positions and many stance parameters. Optimizations for two proposed methods are executed and analyzed using a Webots simulation of the quadruped robot built by Bioloid. Furthermore, simulation results for the two proposed methods are tested in a real quadruped robot, and the performance and motion features of GA-, GP -based methods are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.