Abstract
Combinatorial optimization problems are usually modeled in a static fashion. In this kind of problems, all data are known in advance, i.e. before the optimization process has started. However, in practice, many problems are dynamic, and change while the optimization is in progress. For example, in the dynamic vehicle routing problem (DVRP), new orders arrive when the working day plan is in progress. In this case, routes must be reconfigured dynamically while executing the current simulation. The DVRP is an extension of a conventional routing problem, its main interest being the connection to many real word applications (repair services, courier mail services, dial-a-ride services, etc.). In this article, a DVRP is examined, and solving methods based on particle swarm optimization and variable neighborhood search paradigms are proposed. The performance of both approaches is evaluated using a new set of benchmarks that we introduce here as well as existing benchmarks in the literature. Finally, we measure the behavior of both methods in terms of dynamic adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.