Abstract
Background:Ictal stereo-encephalography (sEEG) biomarkers for seizure onset zone (SOZ) localization can be classified depending on whether they target abnormalities in signal power or functional connectivity between signals, and they may depend on the frequency band and time window at which they are estimated. New method:This work aimed to compare and optimize the performance of a power and a connectivity-based biomarker to identify SOZ contacts from ictal sEEG recordings. To do so, we used a previously introduced power-based measure, the normalized mean activation (nMA), which quantifies the ictal average power activation. Similarly, we defined the normalized mean strength (nMS), to quantify the ictal mean functional connectivity of every contact with the rest. The optimal frequency bands and time windows were selected based on optimizing AUC and F2-score. Results:The analysis was performed on a dataset of 67 seizures from 10 patients with pharmacoresistant temporal lobe epilepsy. Our results suggest that the power-based biomarker generally performs better for the detection of SOZ than the connectivity-based one. However, an equivalent performance level can be achieved when both biomarkers are independently optimized. Optimal performance was achieved in the beta and lower-gamma range for the power biomarker and in the lower- and higher-gamma range for connectivity, both using a 20 or 30 s period after seizure onset. Conclusions:The results of this study highlight the importance of this optimization step over frequency and time windows when comparing different SOZ discrimination biomarkers. This information should be considered when training SOZ classifiers on retrospective patients’ data for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.