Abstract

The behavior of the conventional activated-sludge (CAS) process was compared to that of the membrane bioreactor (MBR) process under limiting operating conditions; that is, at a low solids retention time (SRT) and hydraulic residence time (HRT). The SRT was varied from 2 to 7 days, and the HRT ranged from 5 to 18 hours. The comparison was carried out in terms of nitrification and denitrification kinetics and in terms of the carbon and nitrogen removal performance of these processes. The study involved two pilot-scale units: a CAS unit with a 9-m3 aeration tank and a 225-L MBR. Both of these units were installed and run under real process conditions at a wastewater treatment plant in Evry, France. In the case of the MBR process, the specific nitrification rates, rN, and the specific denitrification rates, rDN, increased as SRT was reduced from 6.5 days to 2 days. This trend was reversed and the rN and rDN decreased only when the HRT was reduced to 5 hours. A similar behavior was observed in the case of the CAS process, although rN and rDN increased only when the SRT was reduced to as low as 4 days; below this value, the rates dropped considerably. It seems that the presence of the membrane renders the MBR more robust by preventing the washout of nitrifiers at low SRT and HRT. Besides the structure and size distribution of the MBR, flocs are more favorable to intraparticle mass transfer than those of the CAS process and could explain the higher nitrification kinetics observed with the MBR process. In all cases, the carbon and nitrogen removal performance of the MBR process was better than that of the CAS system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call