Abstract

Turbo codes are attractive compared with Low Density Parity Check (LDPC) codes for Forward Error Correction (FEC) applications mainly due to their superior performance, especially at low Signal-to-Noise Ratio (SNR) such as are common in Powerline channels. For example, IEEE 1901-FFT PHY used the Turbo coding scheme defined in the HomePlug AV standards. However, patent fees are usually required for each turbo-code enabled manufactured device. The objective of this paper is to examine whether unlicensed LDPC codes, with optimized choices of block lengths, could be a viable alternative for future Powerline Communications (PLC) applications. The paper shows that the performance of the LDPC codes can approximate that of the Turbo codes with higher block lengths, on channels with typical and realistic PLC characteristics. The paper also shows that the additional complexity associated with this increase in block length can be mitigated by the use of Quasi-Cyclic LDPC (QC-LDPC) codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.