Abstract

The paper introduces a new FireAndSmoke open dataset comprising over 22,000 images and 93,000 distinct instances compiled from 1200 YouTube videos and public Internet resources. The scenes include separate and combined fire and smoke scenarios and a curated set of difficult cases representing real-life circumstances when specific image patches may be erroneously detected as fire/smoke presence. The dataset has been constructed using both static pictures and video sequences, covering day/night, indoor/outdoor, urban/industrial/forest, low/high resolution, and single/multiple instance cases. A rigorous selection, preprocessing, and labeling procedure has been applied, adhering to the findability, accessibility, interoperability, and reusability specifications described in the literature. The performances of the YOLO-type family of object detectors have been compared in terms of class-wise Precision, Recall, Mean Average Precision (mAP), and speed. Experimental results indicate the recently introduced YOLO10 model as the top performer, with 89% accuracy and a mAP@50 larger than 91%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.