Abstract

The management of the life cycle of the transport network is one of the main challenges of sustainable mobility. Roads and highways cause significant damage to the ecosystem. Specifically, lighting systems contribute to climate change, energy consumption, and human health effects. In this context, this work proposes the combination of life cycle assessment (LCA) with life cycle costing (LCC) to analyze the eco-efficiency of the life cycle of a road, including evaluation of the relative contribution of the lighting system to the total impact. Four scenarios were included in the model: (S1) high-pressure sodium lamps with ballast powered from the grid; (S2) halogen lamps powered from the grid; (S3) light-emitting diode lamps powered from the grid; and (S4) light-emitting diode lamps powered from a standalone photovoltaic system. The life cycle stages of raw material extraction, construction, use, maintenance, and end of road life were included in the analysis. The results show that scenarios S3 and S1 are the most eco-efficient relative to the less favorable S2 scenario (80% and 74% lower, respectively). Scenarios with the least environmental impact are the most economically viable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.