Abstract

Abstract We study the mass and scattering cross section of $SU(2)$ glueballs as dark matter candidates using lattice simulations. We employ both naive and improved $SU(2)$ gauge actions in $3+1$ dimensions with several $\beta$ values, and adopt both the traditional Monte Carlo method and the flow-based model based on machine learning techniques to generate lattice configurations. The mass of dark scalar glueball with $J^{PC}=0^{++}$ and the NBS wave function are calculated. 
Using a coupling constant of $\beta=2.2$ as an illustration, we compare the dark glueball mass calculated from the configurations generated from the two methods. While consistent results can be achieved, the two methods demonstrate distinct advantages. Using the Runge-Kutta method, we extract the glueball interaction potential and two-body scattering cross section. From the observational constraints, we obtain the lower bound of the mass of scalar glueball as candidates of dark matter. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call