Abstract

Multispectral LiDAR, characterization of completeness, and consistency of spectrum and spatial geometric data provide a new data source for land cover classification. However, how to choose the optimal features for a given set of land covers is an open problem for effective land cover classification. To address this problem, we propose a comparative scheme, which investigates a popular deep learning (deep Boltzmann machine, DBM) model for high-level feature representation and widely used machine learning methods for low-level feature extraction and selection [principal component analysis (PCA) and random forest (RF)] in land cover classification. The comparative study was conducted on the multispectral LiDAR point clouds, acquired by a Teledyne Optech's Titan airborne system. The deep learning-based high-level feature representation experimental results showed that, on an ordinary personal computer or workstation, this method required larger training samples and more computational complexity than the machine learning-based low-level feature extraction and selection methods. However, our comparative experiments demonstrated that the classification accuracies of the DBM-based method were higher than those of the RF-based and PCA-based methods using multispectral LiDAR data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call