Abstract

The bioactive glass systems of xAg2O-SiO2-P2O5-CaO and xZnO-SiO2-P2O5-CaO (x = 2 and 4% mol) were successfully synthesized through sol-gel method. The effect of silver and zinc contents on the in-vitro formation of hydroxyapatite (HA), cell viability, and antibacterial properties were studied. The HA formation and its microstructure were investigated through scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The results showed that the rate of crystalline HA formation on SiO2-P2O5-CaO-xAg2O bioactive glass, in which x = 0 and 2, (B (58S) and BA2), was higher than other specimens. The evaluation methods of 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and alkaline phosphatase (ALP) illustrated that low silver (2% Ag2O) amount had a stimulating influence on both differentiation and proliferation promotion of cells (G292 osteoblastic). Furthermore, the antibacterial investigations showed that Ag bioglass samples had better antibacterial effect in comparison to Zn bioglass samples. Accordingly, the results revealed that specimen BA2 can be a good candidate for bone tissue application due to its significant bioactivity, antibacterial potential and optimal cell viability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call