Abstract
Based on previous research, there are differences between eye movements of people with attention-deficit hyperactivity disorder (ADHD) and of healthy people, as a result, the existence of differences regarding the electrooculogram (EOG) signals of the 2 groups exists. Thus, this study aimed to examine the recorded EOG signals of 30 ADHD children and 30 healthy children while performing an attention-related task. For this purpose, the EOG signals of these 2 groups were decomposed utilizing various wavelet functions. Afterward, features, including mean, energy, and standard deviation (SD) of approximation and detail wavelet coefficients were calculated. The Davies-Bouldin (DB) index was used for the evaluation of the feature space quality. Finally, the 2 groups were classified using one-dimensional feature vector and support vector machine (SVM). The SD of detail coefficients (db4) was selected as the most effective feature for separating the 2 groups. Statistical analysis revealed that the values of energy and SD of EOG signals' detail coefficients were significantly lower in the ADHD group in comparison with the healthy group (P<.001). These results showed that the speed of the ADHD group's eye movements was slower due to the fact that the high-frequency band activity of EOG signals in the healthy group was higher. In addition, the EOG signals were classified with a detection accuracy of 83.42 ± 3.8%. The results of this study can be applied in designing an EOG biofeedback protocol to treat or mitigate the symptoms of ADHD patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.