Abstract

AbstractTo maintain the production and improve the recovery of hydrocarbons, nano materials are introduced recently. Improved oil recovery (IOR) is the application of various techniques for increasing the quantity of the crude oil that can be recovered from a hydrocarbon oil field. Among these techniques are chemical injection, which has been an expensive method, and field applications have been decreased during the past two decades. Currently with the advent of nanotechnology, nanofluids have been launched as a cheap, efficient and environmentally friendly alternative to other chemicals. Nanomaterials has been created and proposed to be used for IOR. Several nano materials with various sizes and concentrations have been proposed. Among the various these nanomaterials, nano-silica, nano alumina, nano zinc, and nano iron with different sizes has been recommended.In the present work, two different nano materials used to improve the recovery of oil experimentally. These nano materials are; nano silica, and nano alumina. The size of each nano material is varies from 80 to 87 nm. The size and shape of each particles were examined using x-ray diffraction (XRD) and field emission-scanning electron microscope (FE-SEM) while their microanalysis was performed by Energy Dispersive System (EDS). Some these materials are prepared mechanically using ball mill such as nano silica and the others are created chemically such as nano alumina.Numerous flooding scenarios have been performed to compare between the potentials of each nanofluids used to improve the hydrocarbon recovery. A control experimental run with water flooding (WF) was performed first. The ultimate recovery factor by WF was found about 67%. Then a flooding process using each nano fluid has been conducted for three different concentrations (0.1, 0.5, and 1 wt%). The ultimate recovery factors have been measured for all of these nano fluids and they are ranging from 62% to 81 %. The reasons for this improving have been addressed and explained by measuring the viscosity of these nano fluids and interfacial tension.This research examines and analyzes the new outcomes from implementing these nanomaterials for improving oil recovery over the traditional methods. Ultimately, the knowledge gained from this work can be used to interpret and define the nanofluids improvement mechanisms, and projected a roadmap for ongoing and future work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call