Abstract

The measurement of cloud microphysical parameters plays an important role in describing characteristics of liquid phase clouds and investigating mutual relationships between clouds and precipitation. In this paper, cloud microphysical parameters at Liupan Mountain Weather Station in Ningxia are measured with a high-resolution coaxial digital holographic imager and a fog monitor 120. There are differences in the measurement results between the two instruments. The number concentration measured by the digital holographic imager is about 1.5 times that of the fog monitor 120. However, their Pearson correlation coefficient is above 0.9. Through analysis, we found that the measurement results of the digital holographic imager and fog monitor 120 are differences in 2–4 µm and 7–50µm. For the droplets with the diameters of 4–7 µm, their measurement results have good consistency. By analyzing the influence of wind field and detection sensitivity on the measurement principle, the reasons which caused the difference are proposed. Advice is given to observe topographic clouds by using the above two instruments. In addition, the differences in liquid water content and visibility are analyzed due to the absence of small and large droplets. The study provides data support for improving the accuracy of instruments in measuring cloud droplets and is useful for research in the field of cloud microphysical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.