Abstract
We investigated whether the imposition of chronic alcohol in hypertension leads to greater biochemical and cellular abnormalities of the myocardium than those arising in normotension. Fifteen-week-old spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were fed ethanol-containing diets for six weeks. Particular attention was focused on the composition of contractile proteins identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fractional rate of protein synthesis, and synthesis rates relative to RNA (RNA activity) or DNA (cellular efficiency). In addition, myocardial enzymes and adenine nucleotides were measured. In both SHR and WKY rats chronic ethanol caused a general decrease in the contents of all nine contractile proteins with myosin heavy chain predominantly affected. Fractional rates of mixed (i.e., total) and myofibrillary proteins remained unaltered in both WKY rats and SHR, as were cellular efficiencies. The RNA activity was significantly reduced in ethanol-treated SHR but not in WKY rats. In ethanol-treated SHR, cardiac creatine kinase (CK) and malate dehydrogenase (MDH) activities were increased, AMP levels were elevated, whilst ATP levels and the energy charge were reduced. In WKY rats, the only significant change related to increased aspartate aminotransferase activities in response to alcohol feeding. Although there were only subtle differences between the response of the normotensive and hypertensive rats due to ethanol dosage, the reduced ATP levels and increased CK and MDH activities in SHR may reflect a greater susceptibility to ischaemic damage. Reduced contractile protein content, particularly myosin heavy chain, may contribute to contractile defects, a common feature of subclinical and clinical alcoholic cardiomyopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.