Abstract
Background. This study aimed to compare the cyclic fatigue resistance of ProTaper Next, Hyflex CM, 2Shape, and TF-Adaptive nickel-titanium endodontic file systems with various alloy properties and production methods and investigate the fractured cross-sectional surface of files due to cyclic fatigue by scanning electron microscopy (SEM). Methods. A total of 120 instruments were used (n=30). For standardization, #25/.06 apical diameter and taper angle were selected for each file system. The experiment of files was subjected to a static cyclic fatigue model. The time for files’ failure was recorded with a digital chronometer and multiplied by the rotation speed to calculate the number of cycles. Kolmogorov-Smirnov, one-way ANOVA, and post hoc Bonferroni analysis were used for statistical analysis. Statistical significance was set at P < 0.05. Results. The number of cycles for the failure of files was compared between the groups, and significant differences were found (P < 0.05). The number of cycles for instrument failure was recorded from the highest to the lowest as follows: Hyflex CM, TF-Adaptive, ProTaper Next, and 2Shape. Conclusion. The files were fractured at different average numbers of cycles in an artificial canal in all the groups. The Hyflex CM demonstrated better cyclic fatigue resistance than TF Adaptive, ProTaper Next, and 2Shape file systems. Factors such as production patterns, alloy properties, and the phase in which the files were produced might affect the lifespan of file systems.
Highlights
Nickel-titanium (NiTi) rotary files have gain popularity for preparing and shaping the root canal system because of their cutting capacity, elasticity, and efficiency.[1]
This study aimed to evaluate and compare ProTaper Hyflex CM, 2Shape, and TF-Adaptive file systems made of different alloy properties (M-wire, CM-wire, T-wire, and R-phase) and production methods concerning cyclic fatigue resistance and investigate the fractured crosssectional surface due to cyclic fatigue by scanning electron microscopy (SEM)
The fractured lengths of the files were recorded, and the PTN (3,85 ± 0.25) demonstrated a significant difference compared to other groups (P < 0.05)
Summary
Nickel-titanium (NiTi) rotary files have gain popularity for preparing and shaping the root canal system because of their cutting capacity, elasticity, and efficiency.[1]. Different cross-sectional designs and alloys have been proposed to resist fatigue failure of rotary files and increase their flexibility.[1] Various thermally treated NiTi alloys, such as CM-Wire, M-Wire, T-Wire, and R-phase, have been introduced for optimizing the transformation behavior of NiTi alloy and microstructure, which affect the mechanical structure.[1,6] ProTaper (PTN, Dentsply Tulsa Dental Specialties, Tulsa, OK) has a rectangular cross-section and a variable taper that offsets the center point. It is manufactured of M-wire alloy that underwent a specific thermomechanical process to improve cyclic fatigue resistance.[7]. Factors such as production patterns, alloy properties, and the phase in which the files were produced might affect the lifespan of file systems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dental Research, Dental Clinics, Dental Prospects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.