Abstract
<abstract><p>In this article, reliability estimation for a system of multi-component stress-strength model is considered. Working under progressively censored samples is of great advantage over complete and usual censoring samples, therefore Type-II right progressive censored sample is selected. The lifetime of the components and the stress and strength components are following the power Lomax distribution. Consequently, the problem of point and interval estimation has been studied from different points of view. The maximum likelihood estimate and the maximum product spacing of reliability are evaluated. Also approximate confidence intervals are constructed using the Fisher information matrix. For the traditional methods, bootstrap confidence intervals are calculated. Bayesian estimation is obtained under the squared error and linear-exponential loss functions, where the numerical techniques such as Newton-Raphson and the Markov Chain Monte Carlo algorithm are implemented. For dependability, the largest posterior density credible intervals are generated. Simulations are used to compare the results of the proposed estimation methods, where it shows that the Bayesian estimation method of the reliability function is significantly better than the other methods. Finally, a real data of the water capacity of the Shasta reservoir is examined for illustration.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.