Abstract

Photodynamic inactivation (PDI) has been investigated to cope with the increasing incidence of multidrug-resistant (MDR) pathogens. In Hong Kong, methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli are the two commonest MDR pathogens. Here, we studied the photodynamic inactivation (PDI) mediated by poly-L-lysine chlorin(e6) conjugate (pL-ce6) and toluidine blue O (TBO) in clinical MRSA and ESBL producing E. coli, together with their corresponding American Type Culture Collection (ATCC) strains. Both pL-ce6 and TBO mediated a light- and drug dose-dependent efficacy for the four pathogens. pL-ce6 was more effective. pL-ce6 at 8 microM, 30 Jcm(-2), attained 5 log killing for ESBL-producing E. coli and E. coli (ATCC 25922); 4 log killing for MRSA, and 3 log killing for S. aureus (ATCC 25923). TBO at 80 microM, 30 Jcm(-2), only exhibited 3 log killing in MRSA and 2 log killing in S. aureus (ATCC 25923). TBO (400 microM, 30 Jcm(-2)) induced equal killing for ESBL-producing E. coli and E. coli (ATCC 25922). Our studied MRSA isolate responded better than S. aureus (ATCC 25923). Thus, pL-ce6-mediated PDI in other MRSA isolates deserves further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.