Abstract

Camera-lucida drawings of Golgi-impregnated astroglial cells and their processes are described by the fractal dimension of their borders, which is an objective, quantitative measure of morphological complexity. Protoplasmic astrocytes from human neocortex have fractal dimensions ( D) that are larger than those of fibrous astrocytes from the cat optic nerve. Marginal astrocytes from monkey cerebropontile angle have two kinds of processes: (1) short, thick processes with end-feet abutting the pial surface, with relatively high D's, and (2) very long, thin processes extending into the neuronal tissue, with very low D's. These data indicate that short astrocytic processes may have a complex surface (and have a high D), whereas long processes are rather smooth (and have a low D). A comparison between transmission electron microscopy morphometry and measures of D at the light microscopic level, performed on different parts of rabbit retinal Müller glial cells, suggests that D is strongly correlated to the surface-to-volume ratio which, in part, determines the length constant of a cable for core-conductance of currents. We provide data supporting the hypothesis that astroglial cell geometry is adjusted to allow for sufficient spatial buffering K + currents, even through very long processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.