Abstract

Residual stresses are basically developed due to intrinsic and extrinsic strains that form during the processing of composite materials. The extrinsic strains can be determined using Coefficient of Thermal Expansion (CTE), material properties, geometry of the structure, and processing conditions. Finite Element Method (FEM) as an efficient alternative technique for stress and strain analysis of the micromechanical systems and structures, has been employed to numerically investigate the residual stresses developed in Metal-Core Piezoelectric Fibers (MPF) and Active Fiber Composites (AFC) (or Macro Fiber Composites (MFC)), during the processing. Here in this work, ANSYS Finite Element Analysis (FEA) software is used to develop three different 3-dimensional models for MPF and MFC structures and then each model is solved for strain and stress results. Next, the stress and strain components of these models are studied throughout the structures to identify the magnitude and type of the stresses and strains within the constituent materials and then compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.