Abstract
Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.