Abstract

Aim. To compare and evaluate the static frictional resistance offered by the four different types of ligation methods in both dry and wet conditions and at different durations when immersed in artificial saliva. Material and Methods. Alastik Easy to Tie modules, Super Slick Mini Stix elastomeric modules, Power “O” modules, and 0.009″ Stainless Steel ligatures were used to compare the static friction using maxillary canine and premolar Preadjusted Edgewise brackets with 0.022″ × 0.028″ slot and 0.019″ × 0.025″ stainless steel wires. Results. The mean frictional resistance for Alastik modules was the lowest and that of Stainless Steel ligatures was found to be highest among the four groups compared and the difference among the four groups was statistically significant (P < 0.005). The mean static frictional resistance in all groups under dry conditions was lower than that under wet conditions. No statistical significant differences were found when the groups were compared at different time periods of immersion in artificial saliva. Conclusion. This study concludes that the Alastik modules showed the lowest mean static frictional forces compared to any other ligation method, though no significant difference was found for different time periods of immersion in the artificial saliva.

Highlights

  • The success of the straight wire appliance depends on the ability of orthodontic arch wire to slide freely through brackets and tube

  • It was seen that the mean static frictional resistance in all groups was lower in dry conditions sample as compared to wet conditions in all the time intervals

  • The mean static frictional resistance for Group I (Alastik modules) was the lowest and that of Group IV (Stainless Steel ligatures) was the highest among the four groups compared in wet conditions and the difference in the frictional resistance offered by the four groups was statistically significant (P < 0.005)

Read more

Summary

Introduction

The success of the straight wire appliance depends on the ability of orthodontic arch wire to slide freely through brackets and tube. During orthodontic tooth movement with sliding mechanics, a frictional force generated at the bracket/arch wire interface tends to impede the desired movement [1]. Friction is an important factor in all forms of sliding mechanics such as space closure and canine retraction into an extraction site and in leveling and alignment where the wire must slide through the brackets and tubes. The nature of friction in orthodontics is multifactorial, derived from a multitude of both mechanical and biological factors. The method of ligation is an important contributor to the frictional force generated at the bracket/archwire interface. Magnitude of friction depends upon the amount of normal force pushing the two surfaces together which is decided by the method of ligation, the surface roughness, and the nature of materials from which the surfaces are made [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call