Abstract
Predicting shear stress distribution has proved to be a critical problem to solve. Hence, the basic objective of this paper is to develop a prediction of shear stress distribution by machine learning algorithms including artificial neural networks, classification and regression tree, generalized linear models. The data set, which is large and feature-rich, is utilized to improve machine learning-based predictive models and extract the most important predictive factors. The 10-fold cross-validation approach was used to determine the performances of prediction methods. The predictive performances of the proposed models were found to be very close to each other. However, the results indicated that the artificial neural network, which has the R value of 0.92 ± 0.03, achieved the best classification performance overall accuracy on the 10-fold holdout sample. The predictions of all machine learning models were well correlated with measurement data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.