Abstract

Introduction: The study aimed to assess the sealing ability of Biodentine™, ProRoot mineral trioxide aggregate (MTA), and Super-EBA as furcation perforation repair materials using field emission gun-scanning electron microscope (FEG-SEM). Materials and Methods: Thirty-six extracted human permanent mandibular molar teeth were collected and cleaned. Standard access cavity preparation was made, and intentional perforation was created in each of the access cavity-prepared teeth using #12 round bur. The teeth were randomly divided into three groups each containing 12 teeth. The perforations were sealed as follows: Group A with Biodentine™, Group B with ProRoot MTA, and Group C with Super-EBA. The repair materials for all the three groups were evaluated for marginal adaptation using FEG-SEM. Data were statistically analyzed using one-way ANOVA and Tukey's honest significance test. Results: Quantitative FEG-SEM observations illustrated that the mean gap at the dentin–furcation repair material interface was as follows: Biodentine (3.01 ± 0.37 μm), ProRoot MTA (4.98 ± 0.68 μm), and Super-EBA (8.03 ± 0.68 μm). The difference between Biodentine™ and ProRoot MTA was not statistically significant (P > 0.05). Individually, Biodentine and ProRoot MTA showed statistically significant differences when compared to Super-EBA (P Conclusion: The sealing ability of ProRoot MTA and Biodentine™ as a repair material of furcation perforation was better than Super-EBA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call