Abstract

Computational fluid dynamic simulations of oxy-coal combustion are demonstrated in a lab-scale furnace and full-scale boiler employing gray and non-gray formulations of recently proposed radiative property models for the gas-phase. The investigated scenarios included: air-firing, oxy-firing with dry and wet flue-gas recycle (FGR). The study confirms that the temperature and wall radiative flux profiles encountered during air firing can be replicated in both dry and wet FGR scenarios through an appropriate selection of (CO2 + H2O)/O2 molar ratios in the oxidizer stream. The computed temperature profiles were in reasonable agreement with the experimental measurements. In the lab-scale furnace, lower flame temperatures and smaller path lengths minimized the differences between the gray and non-gray model predictions. Within the full-scale boiler, large volume pockets were present where the radiation was dominated by the gas-phase. This combined with higher peak flame temperatures and longer path lengths resulted in: a 10% variation between the gray and non-gray radiative fluxes and a 50 K difference in the predicted average outlet gas temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.