Abstract
We present a comparative evaluation of two data-driven models used in translation selection of English-Korean machine translation. Latent semantic analysis(LSA) and probabilistic latent semantic analysis (PLSA) are applied for the purpose of implementation of data-driven models in particular. These models are able to represent complex semantic structures of given contexts, like text passages. Grammatical relationships, stored in dictionaries, are utilized in translation selection essentially. We have used k-nearest neighbor (k-NN) learning to select an appropriate translation of the unseen instances in the dictionary. The distance of instances in k-NN is computed by estimating the similarity measured by LSA and PLSA. For experiments, we used TREC data(AP news in 1988) for constructing latent semantic spaces of two models and Wall Street Journal corpus for evaluating the translation accuracy in each model. PLSA selected relatively more accurate translations than LSA in the experiment, irrespective of the value of k and the types of grammatical relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.