Abstract
Traditional concrete production is a major contributor to global warming. Industrially produced geopolymer concrete is a viable substitute to limit the negative impacts of concrete production. Thus, this study developed novel geopolymer concrete mix designs using industrial side streams, such as bark boiler ash, construction and demolition waste (CDW), fibre waste, and mine tailings. A cradle-to-gate life cycle assessment (LCA) methodology was conducted to evaluate the potential impacts of these different geopolymer concrete (GPC) mix designs in comparison with traditional concrete. The results showed that industrial-based geopolymer concrete with lower amounts of sodium silicate and metakaolin exhibited better environmental performance. Specifically, a 10 % reduction in metakaolin content reduces the global warming impact by 16 % compared with traditional concrete. The processing and curing of industrial waste for concrete formulations has an environmental impact of less than 1 %. From a sustainability perspective, the environmental performance of geopolymer concrete produced from industrial side streams can be further improved by increasing the concentration of recycled waste in the concrete mixes. In addition, the effective use of industrial side streams can improve the waste management, sustainability, and strength of concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.