Abstract

Next-generation sequencing or massively parallel sequencing have revolutionized genomic research. RNA sequencing (RNA-Seq) can profile the gene-expression used for molecular diagnosis, disease classification and providing potential markers of diseases. For classification of gene expressions, several methods that have been proposed are based on microarray data which is a continuous scale or require a normal distribution assumption. As the RNA-Seq data do not meet those requirements, these methods cannot be applied directly. In this study, we compare several classifiers including Logistic Regression, Support Vector Machine, Classification and Regression Trees and Random Forest. A simulation study with different parameters such as over dispersion, differential expression rate is conducted and the results are compared with two mRNA experimental datasets. To measure predictive accuracy six performance indicators are used: Percentage Correctly Classified, Area Under Receiver Operating Characteristic (ROC) Curve, Kolmogorov Smirnov Statistics, Partial Gini Index, H-measure and Brier Score. The result shows that Random Forest outperforms the other classification algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.