Abstract

Prediction of long-term rainfall patterns is a highly challenging task in the hydrological field due to random nature of rainfall events. The contribution of monthly rainfall is important in agriculture and hydrological tasks. This paper proposes two data-driven models, namely biogeography-based extreme learning machine (BBO-ELM) and deep neural network (DNN), to predict one, two, and three month-ahead rainfall over India (All-India and six other homogeneous regions). Three other data-driven models called ELM, genetic algorithm (GA)-based ELM, and particle swarm optimization (PSO)-based ELM are used to compare the performance of the proposed models. Firstly, partial autocorrelation function (PACF) is applied in all datasets to select the optimal number of lags for input to the models. Secondly, the wavelet-based data pre-processing technique is applied in selected optimal lags and feed to the proposed models for achieving higher prediction performance. To investigate the performance of proposed models, a non-parametric statistical test, Anderson–Darling’ Normality test, is performed in all India dataset. The wavelet-based proposed hybrid models show better prediction capability compared to optimal lag-based proposed models. This study shows the successful application of time-series data using proposed techniques (optimal lags-based BBO-ELM and wavelet-based DNN) in the hydrological field which may be used for risk mitigation from dreadful natural events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.