Abstract
Data-driven normal behaviour models have gained traction over the last few years as a convenient way of modelling turbine operational health to detect anomalies. By leveraging high-dimensional operational relationships, temperature thresholds can be automatically calculated based on each individual turbine unique operating envelope, in theory minimising false alarms and providing more reliable diagnostics. The aim of this work is to provide further insight into practical uses and limitations of implementing normal behaviour temperature models in practice, to inform practitioners, as well as assist in improving wind turbine generator fault detection systems. Results suggest that, on average, as little as two months of data are adequate to produce stable temperature alarm thresholds, with the worst case example requiring approximately 200–290 days of data depending on the component and desired convergence criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.