Abstract

Social networks are essential resources to obtain information about people’s opinions and feelings towards various issues as they share their views with their friends and family. Suicidal ideation detection via online social network analysis has emerged as an essential research topic with significant difficulties in the fields of NLP and psychology in recent years. With the proper exploitation of the information in social media, the complicated early symptoms of suicidal ideations can be discovered and hence, it can save many lives. This study offers a comparative analysis of multiple machine learning and deep learning models to identify suicidal thoughts from the social media platform Twitter. The principal purpose of our research is to achieve better model performance than prior research works to recognize early indications with high accuracy and avoid suicide attempts. We applied text pre-processing and feature extraction approaches such as CountVectorizer and word embedding, and trained several machine learning and deep learning models for such a goal. Experiments were conducted on a dataset of 49,178 instances retrieved from live tweets by 18 suicidal and non-suicidal keywords using Python Tweepy API. Our experimental findings reveal that the RF model can achieve the highest classification score among machine learning algorithms, with an accuracy of 93% and an F1 score of 0.92. However, training the deep learning classifiers with word embedding increases the performance of ML models, where the BiLSTM model reaches an accuracy of 93.6% and a 0.93 F1 score.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.