Abstract
In this paper, we report the comparative study of some parameters of II–VI ternary alloy ZnCdTe and II–VI–O dilute oxide ZnCdTeO. The purpose of this comparative study is to establish both the ternary and quaternary alloys as superior materials for optoelectronic and solar cell applications in which the quaternary materials show more superiority than the ternary material. In this purpose, we take the data from the experiments previously done and published in renowned journals and books. The parameters of these alloys are mainly being calculated using Vegard’s law and interpolation method of those collected data. It was certainly demonstrated that the incorporation of O atoms produces a high bandgap ([Formula: see text]) reduction in host ZnCdTe (Zn[Formula: see text]CdxTe) in comparison to the bandgap reduction in host ZnTe material with Cd incorporation. The bandgap of ZnCdTeO (Zn[Formula: see text]CdxTe[Formula: see text]Oy) was found to be reduced to 1.1357 at [Formula: see text] and the spin–orbit splitting energy ([Formula: see text]) value of ZnCdTeO was calculated to be 1.175[Formula: see text]eV for Cd concentration of 0.5[Formula: see text]mole and O concentration of 0.1[Formula: see text]mole both of which showed excellent results with the prospect of optoelectronic and solar cell applications. The constant rise in the spin–orbit curve signifies a very less internal carrier recombination which decreases the leakage current and augments the efficiency of solar cell. The lattice constants and strain calculation values give very good results and confirm the stability of the materials. Besides, the calculated band offsets values show that for ZnCdTeO, there is higher bandgap reduction than that of ZnCdTe. Moreover, ZnCdTeO covers a wide range of wavelength in the visible region starting from violet region at 393[Formula: see text]nm upto red region at 601[Formula: see text]nm. Both ZnCdTe and ZnCdTeO are found to have excellent applications in optoelectronic and solar cell devices though quaternary ZnCdTeO proves much supremacy over ternary ZnCdTe in all aspects of the properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.