Abstract

Pyrolysis is one of the most popular methods for the thermal conversion of biomass-derived materials, which can be applied to produce valuable products such as biochar, bio-oil, and pyrolysis gas. However, this does not change the need for more precise data on the products obtained from such processes under different conditions, using different types of reactors or types of biomass material. Pyrolysis products can have a high energy value and have been extensively studied. In the presented research, three potential energy feedstocks from waste biomass, wheat cereal straw (CS), tobacco waste (TW), and furniture waste (FW) were comprehensively evaluated in terms of product yields, as well as the chemical composition of the volatile products of the pyrolysis process using the pyrolysis–gas chromatography–mass spectrometry technique and the chemical distribution of the products obtained under fixed-bed pyrolysis conditions. The obtained results were compared to data from the literature, which provided thorough information on the pyrolysis of biomass materials in diverse systems. The research identified the primary elements of the liquid fraction, such as N-compounds, furans, phenols, benzene, PAHs, aldehyde-ketone-alcohol, and organic acids, which were the main constituents of the liquid fraction, and the concentration of non-condensable components of gaseous products. The research discussed in this article provides a comprehensive approach to the thermal conversion of biomass materials, which, depending on their origin, processing conditions, and methodologies, can be utilised for more than only energy production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call