Abstract
The spatial organization of outer-membrane porins is studied by optical spectroscopy and molecular modeling. It was found that the OmpF and OmpC porins from Yеrsiniа ruckeri are β-structured membrane proteins typical of the pore-forming proteins of other Gram-negative bacteria. The spatial structures of monomers and trimers of the OmpC and OmpF porins from Y. ruckeri are simulated using methods of structural bioinformatics. It was found that the structural stability of the more thermostable OmpF trimer is sustained by a greater number of hydrogen bonds and hydrophobic interactions. The main differences of the spatial structures of the test porins are observed in the structure of their outer loops. There are three tryptophan residues in the molecules of the OmpC and OmpF porins of Y. ruckeri. It is demonstrated by moleculardynamics methods that after thermal denaturation the solvent accessibility of the Trp212 residue in OmpF porin increased by two times, while the solvent accessibility of a Trp184 residue in OmpC porin was not increased. It is hypothesized that the red-shifted tryptophan fluorescence spectrum of OmpF porin during thermal denaturation is due to the behavior of the Trp212 residue.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.