Abstract

Diabetes can lead to various health problems and complications, such as cardiovascular disease, kidney damage (nephropathy), eye issues, neuropathy, and foot ailments. Therefore, early diagnosis of diabetes can be immensely beneficial in preventing the development of these conditions. Utilizing machine learning is one method to detect diabetes in individuals at an early stage. In this study, we compare the performance of nine machine-learning classification models in predicting diabetes. These models include XGBoost, gradient boosting, AdaBoost, logistic regression, decision tree, KNN, perceptron, random forest, and naïve bayes. We utilize several evaluation metrics, focusing on the f1-score, area under the curve (AUC), and computational runtime. Our comparison reveals that complex tree-based models exhibit the highest f1-score and AUC, albeit with longer execution times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.