Abstract

Slope failures pose significant threats to human safety and vital infrastructure. The urgent need for the accurate prediction of these geotechnical events is driven by two main goals: advancing our understanding of the underlying geophysical mechanisms and establishing efficient evacuation protocols. Although traditional physics-based models offer in-depth insights, their reliance on numerous assumptions and parameters limits their practical usability. In our study, we constructed an experimental artificial slope and monitored it until failure, generating an in-depth displacement dataset. Leveraging this dataset, we developed and compared prediction models rooted in both statistical and machine learning paradigms. Furthermore, to bridge the gap between generic evaluation metrics and the specific needs of slope failure prediction, we introduced a bespoke performance. Our results indicate that while the statistical approach did not effectively provide early warnings, the machine learning models, when assessed with our bespoke performance metric, showed significant promise as reliable early warning systems. These findings hold potential to fortify disaster prevention measures and prioritize human safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call