Abstract

To facilitate optimal application of appropriate scaffold architectures for clinical trials, there is a need to compare different scaffold modifications under similar experimental conditions. In this study was assessed the effectiveness of poly-e-caprolactone (PCL) scaffolds fabricated by fused deposition modelling (FDM), with varying material modifications, for the purposes of bone tissue engineering. The incorporation of hydroxyapatite (HA) in PCL scaffolds, as well as precalcification through immersion in a simulated body fluid (SBF) to produce a biomimetic apatite coating on the scaffolds, was assessed. A series of in vitro studies spanning 3 weeks as well as in vivo studies utilizing a subcutaneous nude mouse model were carried out. PCL and HA–PCL scaffolds demonstrated increasing tissue growth extending throughout the implants, as well as superior mechanical strength and mineralization, as evidenced by X-ray imaging after 14 weeks in vivo. No significant difference was found between PCL and HA–PCL scaffolds. Precalcification with SBF did not result in increased osteoconductivity and cell proliferation as previously reported. Conversely, tensile forces exerted by tissue sheets bridging adjacent struts of the PCL scaffold caused flaking of the apatite coating that resulted in impaired cell attachment, growth and mineralization. The results suggest that scaffolds fabricated by FDM may have load-bearing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call