Abstract

Plastic strain localization in single- and polycrystals of aluminum is investigated. A crystal plasticity formulation is introduced into the three-dimensional boundary-value problem solved numerically by ABAQUS. Three-dimensional polycrystalline microstructure generated by a step-by-step procedure is accounted for explicitly in calculations. Tension of single crystals with different orientations is simulated. The results are compared with those obtained for a polycrystalline microstructure, with the orientation of a single-crystalline grain in the center of the microstructure being varied. Plastic strain localization is shown to develop along active slip systems and to differ for single- and polycrystalline materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.