Abstract
Physiologically based pharmacokinetic (PBPK) models have gained in popularity in the last decade in both drug development and regulatory science. PBPK models differ from classical pharmacokinetic models in that they include specific compartments for tissues involved in exposure, toxicity, biotransformation, and clearance processes connected by blood flow. This study aimed to address the gaps between the mathematics and pharmacology framework observed in the literature. These gaps included nonconserved systems of equations and compartment concentration that were not biologically relatable to the tissues of interest. The resulting system of nonlinear differential equations is solved numerically with various methods for benchmarking and comparison. Furthermore, a sensitivity analysis of all parameters were conducted to elucidate the critical parameters of the model. The resulting model was fit to clinical data as a performance benchmark. The clinical data captured the second line of antiretroviral treatment, lopinavir and ritonavir. The model and clinical data correlate well for coadministration of lopinavir/ritonavir with rifampin. Drug-drug interaction was captured between lopinavir and rifampin. This article provides conclusions about the suitability of physiologically based pharmacokinetic models for the prediction of drug-drug interaction and antiretroviral and anti-TB pharmacokinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.