Abstract
AbstractDespite well‐controlled chlorination, no known operational outages and physicochemical parameters of the water indicating a slight tendency to form carbonate deposits, aged and internally uncoated pipelines may experience unexpected internal corrosion events that raise integrity concerns. A typical corrosion damage was investigated consisting of a single perforation covered by a corrosion product cap (CPC) approximately 5 cm in diameter and surrounded by a relatively dense population of blisters of approx. 1 cm in diameter covering shallow corrosion pits. It was observed on the inner wall of an aged on‐land water distribution pipeline after decades of corrosion‐free operation. A dense population of bacteria, sulphides and extracellular polysaccharide substances were detected in the CPC, but none at the pit bottom surrounding the perforation and within the blisters, but abundant fungi were observed on scanning electron microscopy images of the blister bottom. The morphology of the blisters suggests that the blister formation is due to the loss of adhesion of the corrosion product layer, which is influenced by the formation of spherulitic crystals. The Fourier transform infra‐red spectroscopy results suggest that the growth of these carbonate crystals is related to the adsorption of microbially generated carbonyl groups. The results support a likely scenario of the effect of biomineralization on the appearance of corrosion through the formation of blisters, which may provide a niche for microbes that eventually cause corrosion damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.