Abstract
Machine learning algorithms have revolutionized data analysis by uncovering hidden patterns and structures. Clustering algorithms play a crucial role in organizing data into coherent groups. We focused on K-Means, hierarchical, and Self-Organizing Map (SOM) clustering algorithms for analyzing homogeneous datasets based on archaeological finds from the middle phase of Pre-Pottery B Neolithic in Southern Levant (10,500–9500 cal B.P.). We aimed to assess the repeatability of these algorithms in identifying patterns using quantitative and qualitative evaluation criteria. Thorough experimentation and statistical analysis revealed the pros and cons of each algorithm, enabling us to determine their appropriateness for various clustering scenarios and data types. Preliminary results showed that traditional K-Means may not capture datasets’ intricate relationships and uncertainties. The hierarchical technique provided a more probabilistic approach, and SOM excelled at maintaining high-dimensional data structures. Our research provides valuable insights into balancing repeatability and interpretability for algorithm selection and allows professionals to identify ideal clustering solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.