Abstract
Among the phenomena that greatly influence the river morphology is the sediment transport, especially the bed load mode causing a significant changes in the river morphology. Indeed, the choice of a model or a methodology that can better quantify sediment transport, remains always poorly understood. In this context, a new approach to studying the morphological evolution of rivers is proposed by Charru in 2004, it is based on a model for the erosion and deposition of the particles under laminar flow. In 2006, Charru proposes an extension of this model to turbulent flow. In more advanced research, Lajeunesse in 2010, realizes an experimental study to support the erosion deposition model of Charru, and proposes a new formula to calculate the bed load transport rate. The current research focuses on the effects of bed load transport on the morphological changes in rivers. In the first part, a comparative analysis of empirical laws of bed load transport with experimental data was conducted, in order to test and validate the new bed load model proposed by Lajeunesse, then to check the grain size effect on the sediment transport capacity. In the second part, we are interested in the study of the morphological evolution in rivers. It was performed through numerical modeling using TELEMAC 2D coupled with SISYPHE. The aim is to understand and analyze the morphological changes in the channel bottom. The analysis of the results presented in this paper showed that through the calculated score, most formulas give satisfactory results. In particular at the grain scale, the new bed load transport relation of Lajeunesse, provides an excellent fit to the experimental data. Finally, we were interested in the study of the morphological changes in the channel bottom, it appers clear that the bed load transport has large impacts on river morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.