Abstract

An induced magnetic field is produced owing to an electric current flowing through the conductor. The induced magnetic field and the length of the conductor are in direct proportion. The current study examines the comparison of Yamada-Ota and Xue thermal conductivity models for a mixed convective hybrid nanoliquid flow through the permeable vertical channel influenced by an induced magnetic field. The projected model is supported by the combination of thermal radiation and heat generation and multiple slip conditions imposed on the walls. The Tiwari and Das model is adopted considering engine oil as a working liquid with immersed multiwalled and single-walled carbon nanotubes (CNTs) nanoparticles. The unique combination of strength, conductivity, and other properties make CNTs a promising material for an extensive variety of applications. These governing partial differential equations undergo conversion to ordinary differential equations via the similarity transformation and are then numerically processed with the bvp4c technique of the MATLAB program. The outcomes are deliberated logically via illustrations and tables. It is perceived that fluid velocity is compromised by strengthening the induced magnetic field. Nevertheless, an opposing trend is witnessed for the enhanced values of the Prandtl number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call