Abstract

Prunus mume is the only fragrant flowering species of Prunus. According to the previous studies, benzyl acetate and eugenol dominate its floral scent. However, the diversity of its floral scents remains to be elucidated. In this work, the floral volatiles emitted from eight intraspecific cultivars of P. mume with white, pink and red flowers, were collected and analyzed using headspace solid-phase microextraction combined with gas chromatograms-mass spectrometry (HS-SPME-GC-MS). In total, 31 volatile compounds were identified, in which phenylpropanoids/benzenoids accounted for over 95% of the total emission amounts. Surprisingly, except for benzyl acetate and eugenol, several novel components, such as benzyl alcohol, cinnamyl acohol, cinnamy acetate, and benzyl benzoate were found in some cultivars. The composition of floral volatiles in cultivars with white flowers was similar, in which benzyl acetate was dominant, while within pink flowers, there were differences of floral volatile compositions. Principal component analysis (PCA) showed that the emissions of benzyl alcohol, cinnamyl alcohol, benzyl acetate, eugenol, cinnamyl acetate, and benzyl benzoate could make these intraspecific cultivars distinguishable from each other. Further, hierarchical cluster analysis indicated that cultivars with similar a category and amount of floral compounds were grouped together. Our findings lay a theoretical basis for fragrant plant breeding in P. mume.

Highlights

  • For ornamental plants, floral fragrance is an attractive and significant character, playing a crucial role in plant–animal communication, including attracting pollinators and defense against pathogens [1].floral scent can increase aesthetic value and attract visitors [2]

  • The composition and number of volatile organic compounds (VOCs) vary among different species or even in interspecific and intraspecific cultivars [4,5]

  • More and more studies focusing on floral fragrance profiles have been performed in many fragrant plants, including Lilium [6,7], Gelsemium sempervirens [8], Chimonanthus praecox [9], Camellia [4], Polianthes tuberosa [5], and bearded irises [10], etc

Read more

Summary

Introduction

Floral fragrance is an attractive and significant character, playing a crucial role in plant–animal communication, including attracting pollinators and defense against pathogens [1]. Floral scent can increase aesthetic value and attract visitors [2]. The trait of floral scent is complex and composed of a series of low molecular weight volatile organic compounds (VOCs) [3]. More and more studies focusing on floral fragrance profiles have been performed in many fragrant plants, including Lilium [6,7], Gelsemium sempervirens [8], Chimonanthus praecox [9], Camellia [4], Polianthes tuberosa [5], and bearded irises [10], etc.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.