Abstract

Enhancement of both efficiency and reliability of MEMS structures has always been an interesting and even essential issue for research community. This paper provides a comparative investigation in this field focusing on the role of initially curved electrodes of capacitive micro-switches. Four models have been introduced by appliance of curved microbeams as either upper or lower electrodes of a capacitive MEMS switch, as well as the conventional base model with straight both electrodes. By introducing a mathematical model and appropriate numerical procedure, the contact area between two electrodes, which has direct effect on the reliability has been estimated using Hertz relation for all models. The electromechanical coupling factor which is related to the efficiency of the switch has been calculated considering the stored mechanical and electrical energy of the system. The results have shown that by appliance of an initial curvature to the both electrodes, the estimated contact area can increase up to 279% compared to the conventional switches. Also, a switch with straight moveable electrode and curved substrate exhibits an increase in coupling factor up to 24% compared to the base model, while increasing the pull-in voltage of the switch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.