Abstract

Infiltration is a vital phenomenon in the water cycle, and consequently, estimation of infiltration rate is important for many hydrologic studies. In the present paper, different data-driven models including Multiple Linear Regression (MLR), Generalized Reduced Gradient (GRG), two Artificial Intelligence (AI) techniques (Artificial Neural Network (ANN) and Multigene Genetic Programming (MGGP)), and the hybrid MGGP-GRG have been applied to estimate the infiltration rates. The estimated infiltration rates were compared with those obtained by empirical infiltration models (Horton’s model, Philip’s model, and modified Kostiakov’s model) for the published infiltration data. Among the conventional models considered, Philip’s model provided the best estimates of infiltration rate. It was observed that the application of the hybrid MGGP-GRG model and MGGP improved the estimates of infiltration rates as compared to conventional infiltration model, while ANN provided the best prediction of infiltration rates. To be more specific, the application of ANN and the hybrid MGGP-GRG reduced the sum of square of errors by 97.86% and 81.53%, respectively. Finally, based on the comparative analysis, implementation of AI-based models, as a more accurate alternative, is suggested for estimating infiltration rates in hydrological models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.