Abstract
<span lang="EN-US">Chronic obstructive pulmonary disease (COPD) is a general clinical issue in numerous countries considered the fifth reason for inability and the third reason for mortality on a global scale within 2021. From recent reviews, a deep convolutional neural network (CNN) is used in the primary analysis of the deadly COPD, which uses the computed tomography (CT) images procured from the deep learning tools. Detection and analysis of COPD using several image processing techniques, deep learning models, and machine learning models are notable contributions to this review. This research aims to cover the detailed findings on pulmonary diseases or lung diseases, their causes, and symptoms, which will help treat infections with high performance and a swift response. The articles selected have more than 80% accuracy and are tabulated and analyzed for sensitivity, specificity, and area under the curve (AUC) using different methodologies. This research focuses on the various tools and techniques used in COPD analysis and eventually provides an overview of COPD with coronavirus disease 2019 (COVID-19) symptoms. </span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.