Abstract

Mouse CYP2C38 and CYP2C39 are two closely related enzymes with 91.8% sequence identity. But they exhibit different substrate binding features. In this study, three-dimensional models of CYP2C38 and CYP2C39 were constructed using X-ray crystal structure of human CYP2C8 as the template based on homology modeling methods and molecular dynamics simulations. Tolbutamide as the common substrate of CYP2C38 and CYP2C39 was docked into them and positioned in their active sites with different orientation. All-trans retinoic acid (atRA) is a specific substrate for CYP2C39 and not catalyzed by CYP2C38. By comparison of active site architectures between CYP2C38 and CYP2C39, the possible reasons affecting their substrate binding were proposed. In addition, Arg241, Glu300, Leu366 and Leu476 are identified as critical residue for substrates binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.