Abstract

Recently the research field of machine learning has experienced a huge rise in popularity and growth. Machine Learning (ML) is a way of improving computational prediction models by allowing the computer to generate its own algorithm to predict outcomes, based on an existing dataset. In this paper, we demonstrate the application of Machine Learning to enhance the educational processes. We implemented regression and supervised learning techniques on data from King Saud University, Riyadh, Saudi Arabia, to construct a predictive model for student performance. This allows for timely interventions in students' academic paths. We utilized extensive and diverse course records, encompassing several academic years and programs, to conduct a comparative analysis of various Machine and Deep Learning methodologies, assessing their efficacy through performance metrics. The developed ML/DL algorithms use Grade Point Averages (GPAs) of courses and semesters as explanatory features to predict the student’s final GPA, which is the target value of the models. Based on the results, the linear and bagging regression models have the best Mean Absolute Error (MAE) performance metric. To ensure there will be enough time for academic intervention, data of early courses and semesters are used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.